
Lecture 07.06
by Marina Barsky

Edit Distance
in linear space
Algorithm by Hirschberg

Combination of Dynamic Programming
and Divide-and-Conquer

Complexity of Edit Distance
computation

■ Quadratic - O(NM),

Where N is the length of S1,

M is the length of S2

What if N and M are very large? 2

scalability problems:

• Quadratic running time

• Quadratic space

Complexity of Edit Distance
computation

■ The time complexity is proportional to the

number of edges in the edit graph: O(NM)

■ The space complexity is proportional to the
number of vertices in the edit graph, since
for each vertex (i,j) we need to store the
best incoming edge (or the value of EDi,j):

O(NM)

ED computation. Space

■ For very long strings, the quadratic
computation time is not as bad as the
quadratic space required to store all the
traceback pointers

■ The quadratic space is a bottleneck of these
algorithms

If we only want the value
D[N][M]

a t c a t g

0 1 2 3 4 5 6

a 1 0 1 2 3 4 5

c

a

t

a

g

If we only want the value
D[N][M]

a t c a t g

a 1 0 1 2 3 4 5

c 2 1 1 1 2 3 4

a

t

a

g

We do not need row 0

for computing values in

row 3

If we only want the value
D[N][M]

a t c a t g

a

c 2 1 1 1 2 3 4

a 3 2 2 2 1 2 3

t

a

g

If we only want the value
D[N][M]

a t c a t g

a

c

a 3 2 2 2 1 2 3

t 4 3 2 3 2 1 2

a

g

If we only want the value
D[N][M]

a t c a t g

a

c

a

t 4 3 2 3 2 1 2

a 5 4 3 3 3 2 2

g

If we only want the value
D[N][M]

a t c a t g

a

c

a

t

a 5 4 3 3 3 2 2

g 6 5 4 4 4 3 2

Then we don’t need more

space than to store 2 rows

of a table:

because for computing row

i we only need to know

values in row i-1, so the

values in rows before i-1

can be discarded

This computation can be

performed in linear space

O(N)

But in order to actually find a
series of edit operations

a t c a t g

a

c

a

t

a 5 4 3 3 3 2 2

g 6 5 4 4 4 3 2

We need to store the

pointers for each vertex

in the entire graph in

order to be able to trace

the path back

How did we

get here with

D=2?

Idea: median border

a t c a t g

a

c

a

t

a

g

Let us set the median line

after the row N/2

Each path, including the

optimal path we are looking

for, crosses the median line

The goal – to find the

point in the median line,

where an optimal path

crosses it

All the paths from vertex (0,0)…

a t c a t g

0 1 2 3 4 5 6

a 1 0 1 2 3 4 5

c 2 1 1 1 2 3 4

a 3 2 2 2 1 2 3

3 t

2 a

1 g

6 5 4 3 2 1 0

a t c a t g

Compute the values of D

for the row above the

median line

Do not store all the

pointers, use only space

for 2 rows

Mark the last row with the

traceback pointers to the

previous row

a t c a t g

a

c

a 3 2 2 2 1 2 3

3 t

2 a

1 g

6 5 4 3 2 1 0

a t c a t g

We have obtained the set of

values of the best paths

which run from the source till

each point on the median line

But we do not know yet which

of these points belong to an

overall cheapest path

All the paths from vertex (0,0)…

All the paths backwards from
vertex (n,m)

a t c a t g

a

c

a 3 2 2 2 1 2 3

3 2 2 2 1 2 3 t

4 3 2 1 1 1 2 a

5 4 3 2 1 0 1 g

6 5 4 3 2 1 0

a t c a t g

Next, we compute all the

best paths running from the

destination point (6,6) till

each point on the median

line, considering the same

strings in the opposite

direction

Now we have enough information

to compute the total cost of the

cheapest path passing through

each point on the median line:

3+3=6

2+2=4

2+2=4

2+2=4

1+1=2

2+2=4

3+3=6

All the paths running from (0,0)
and from (n,m)

a t c a t g

a

c

a 3 2 2 2 1 2 3

3 2 2 2 1 2 3 t

a

g

a t c a t g

We infer that the overall

cheapest path of cost 2 hits the

median line at vertex (3,4):

3+3=6

2+2=4

2+2=4

2+2=4

1+1=2

2+2=4

3+3=6

The point where best path hits
the median line

a t c a t g

a

c

a 3 2 2 2 1 2 3

3 2 2 2 1 2 3 t

a

g

a t c a t g

The remaining parts of the path

a t c a t g

a

c

a

t

a

g

a t c a t g

Thus, we found one vertex
on the best path

Next, we need to find the
remaining parts of this path
which can pass only inside
grey areas of the grid

Recursive computation for NM/2
cells

a t c a t g

a

c

a

t

a

g

By the same bi-directional

algorithm we compute the piece

of the path which hits the

median line of the upper-left

and …

Recursive computation for NM/2
cells

a t c a t g

a

c

a

t

a

g

By the same bi-directional

algorithm we compute the piece

of the path which hits the

median line of the upper-left

and … the bottom-right parts

We have 1+2 pieces of the

best path
a t c a t g

a

c

a

t

a

g

Recursive computation for NM/4

a t c a t g

a

c

a

t

a

g

The remaining areas
are in grey

The Hirschberg’s algorithm.
Computed NM cells

Each time we compute two

tables, whose total size is 2

times smaller than in the

previous step.

In each recursive computation

we find an additional point

belonging to the cheapest

path, and record it

The Hirschberg’s algorithm.
Computed NM/2 cells

Each time we compute two

tables, whose total size is 2

times smaller than in the

previous step.

In each recursive computation

we find an additional point

belonging to the cheapest

path, and record it

The Hirschberg’s algorithm.
Computed NM/4 cells

Each time we compute two

tables, whose total size is 2

times smaller than in the

previous step.

In each recursive computation

we find an additional point

belonging to the cheapest

path, and record it

The Hirschberg’s algorithm.
Termination

When only 2 rows left to be

computed, we can find the best

path using only 2 rows of each

table

The total path is complete

The Hirschberg’s algorithm.
Time complexity

■ The algorithm computes values of

NM+NM/2+NM/4+….NM/(NM/2)=

= NM(1+1/2+1/4+…)=2NM cells

The time complexity is 2NM - still O(NM)

The Hirschberg’s algorithm.
Space complexity

■ The algorithm never uses the space more

than for 2 rows of the table

The space complexity is O(N)

The pseudocode of the Hirschberg’s algorithm

can be found here

You only need to understand and will be

tested about the main idea of the algorithm:

not the precise pseudocode

https://en.wikipedia.org/wiki/Hirschberg%27s_algorithm

