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by Marina Barsky

Edit Distance 
in linear space
Algorithm by Hirschberg

Combination of Dynamic Programming 
and Divide-and-Conquer



Complexity of Edit Distance  
computation

■ Quadratic - O(NM),

Where N is the length of S1, 

M is the length of S2

What if N and M are very large?  2 

scalability problems:

• Quadratic running time 

• Quadratic space



Complexity of Edit Distance  
computation

■ The time complexity is proportional to  the 

number of edges in the edit graph:  O(NM)

■ The space complexity is proportional to  the 
number of vertices in the edit  graph, since 
for each vertex (i,j) we need to  store the 
best incoming edge (or the value of EDi,j): 

O(NM)



ED computation. Space

■ For very long strings, the quadratic  
computation time is not as bad as the  
quadratic space required to store all the 
traceback pointers

■ The quadratic space is a bottleneck of  these 
algorithms



If we only want the value  
D[N][M]
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If we only want the value  
D[N][M]

a t c a t g

a 1 0 1 2 3 4 5

c 2 1 1 1 2 3 4

a

t

a

g

We do not need row 0  

for computing values in 

row 3



If we only want the value  
D[N][M]
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If we only want the value  
D[N][M]
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If we only want the value  
D[N][M]
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If we only want the value  
D[N][M]

a t c a t g

a

c

a

t

a 5 4 3 3 3 2 2

g 6 5 4 4 4 3 2

Then we don’t need  more 

space than to store 2 rows 

of a table:

because for computing row 

i we only need to know 

values in row  i-1, so the 

values in rows before i-1 

can be discarded

This computation can  be 

performed in linear space 

O(N)



But in order to actually find a  
series of edit operations

a t c a t g

a

c

a

t

a 5 4 3 3 3 2 2

g 6 5 4 4 4 3 2

We need to store the  

pointers for each  vertex 

in the entire  graph in 

order to be  able to trace 

the path  back

How did we  

get here with  

D=2?



Idea: median border

a t c a t g
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Let us set the median  line 

after the row N/2

Each path, including  the 

optimal path we  are looking 

for, crosses  the median line

The goal – to find the  

point in the median  line, 

where an optimal  path 

crosses it



All the paths from vertex (0,0)…

a t c a t g

0 1 2 3 4 5 6

a 1 0 1 2 3 4 5

c 2 1 1 1 2 3 4

a 3 2 2 2 1 2 3

3 t

2 a

1 g

6 5 4 3 2 1 0

a t c a t g

Compute the values of  D 

for the row above the 

median line

Do not store all the  

pointers, use only space 

for 2 rows

Mark the last row with  the 

traceback pointers  to the 

previous row



a t c a t g
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c

a 3 2 2 2 1 2 3

3 t

2 a

1 g

6 5 4 3 2 1 0

a t c a t g

We have obtained the  set of 

values of the  best paths 

which run from the source till 

each point on the median line

But we do not know yet which 

of these points belong to an  

overall cheapest path

All the paths from vertex (0,0)…



All the paths backwards from 
vertex (n,m)

a t c a t g

a

c

a 3 2 2 2 1 2 3

3 2 2 2 1 2 3 t

4 3 2 1 1 1 2 a

5 4 3 2 1 0 1 g

6 5 4 3 2 1 0

a t c a t g

Next, we compute all the 

best paths running from the 

destination point (6,6) till 

each point on the median  

line, considering the  same 

strings in the  opposite 

direction



Now we have enough information 

to compute the total cost of the  

cheapest path passing through 

each point on the median line:

3+3=6

2+2=4

2+2=4

2+2=4

1+1=2

2+2=4

3+3=6

All the paths running from (0,0) 
and from (n,m)

a t c a t g
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c

a 3 2 2 2 1 2 3

3 2 2 2 1 2 3 t

a

g

a t c a t g



We infer that the overall 

cheapest path of cost 2 hits the 

median line at vertex (3,4):

3+3=6

2+2=4

2+2=4

2+2=4

1+1=2

2+2=4

3+3=6

The point where best path hits 
the median line
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The remaining parts of the path 

a t c a t g
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g

a t c a t g

Thus, we found one vertex 
on the best path

Next, we need to find the 
remaining parts of this path 
which can pass only inside 
grey areas of  the grid



Recursive computation for NM/2  
cells
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By the same bi-directional  

algorithm we compute the piece  

of the path which hits the  

median line of the upper-left  

and …



Recursive computation for NM/2  
cells

a t c a t g

a

c

a

t

a

g

By the same bi-directional  

algorithm we compute the piece  

of the path which hits the  

median line of the upper-left  

and … the bottom-right parts



We have 1+2 pieces of the

best path
a t c a t g
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c

a

t

a
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Recursive computation for NM/4

a t c a t g

a

c

a

t

a

g

The remaining areas 
are in grey



The Hirschberg’s algorithm.  
Computed NM cells

Each time we compute  two 

tables, whose total  size is 2 

times smaller  than in the 

previous step. 

In each recursive computation 

we find an additional point 

belonging to the cheapest 

path, and record it



The Hirschberg’s algorithm. 
Computed NM/2 cells

Each time we compute  two 

tables, whose total  size is 2 

times smaller  than in the 

previous step. 

In each recursive computation 

we find an additional point 

belonging to the cheapest 

path, and record it



The Hirschberg’s algorithm. 
Computed NM/4 cells

Each time we compute  two 

tables, whose total  size is 2 

times smaller  than in the 

previous step. 

In each recursive computation 

we find an additional point 

belonging to the cheapest 

path, and record it



The Hirschberg’s algorithm.
Termination

When only 2 rows left to be 

computed, we  can find the best 

path using only 2 rows of each 

table

The total path is complete



The Hirschberg’s algorithm.  
Time complexity

■ The algorithm computes values of

NM+NM/2+NM/4+….NM/(NM/2)=

= NM(1+1/2+1/4+…)=2NM cells

The time complexity is 2NM - still O(NM)



The Hirschberg’s algorithm.  
Space complexity

■ The algorithm never uses the space more  

than for 2 rows of the table

The space complexity is O(N)

The pseudocode of the Hirschberg’s algorithm  

can be found here

You only need to understand and will be 

tested about the main idea of the algorithm: 

not the precise pseudocode

https://en.wikipedia.org/wiki/Hirschberg%27s_algorithm

